sunnuntai 12. maaliskuuta 2017

Colosseumin eksentrisyys ja GeoGebra


Jonkin ohjelmiston käyttökelpoisuutta on usein hyvä yrittää testata ongelmalla, jossa todennäköisesti joudutaan ohjelmiston mahdollisuuksien rajoille. Ratkaisu ehkä voidaan löytää, mutta matkalla törmätään ohjelmiston ongelmakohtiin ja rajoituksiin.

Googlelta löytyy hyvä ilmakuva Rooman Colosseumista. Ääriviiva näyttää ellipsiltä. Miten tarkoin se on? Jos se on, niin mikä olisi eksentrisyys?

Kuvan saa vaivatta luetuksi GeoGebraan. Ellipsi tulee määrätyksi, jos tunnetaan viisi pistettä sen kehältä. GeoGebrasta löytyy valmis työkalu, ja naputtelemalla viisi pistettä Colosseumin reunalta saadaan piirretyksi ellipsi, joka hämmästyttävän hyvin yhtyy reunaan. Mitenkähän Colosseumin arkkitehti on rakennelman suunnitellut?

Seuraavassa käsittelen vain kuvassa olevaa ulompaa ellipsiä. Tämän yhtälö $c$ löytyy GeoGebran algebraikkunasta. Yhtälön avulla voidaan hakea ellipsin keskipiste, akselit ja eksentrisyys. Käytössä ovat grafiikka-, algebra- ja CAS-ikkunat. Laskenta voi ehkä olla yksinkertaisempaakin, joten otan mielelläni vastaan kommentteja.

Pohjana on analyyttinen geometria sellaisena kuin sitä aikoinaan yliopistoissa opetettiin. Nykyään ei enää. Referenssinä voi käyttää vanhoja yliopistotason oppikirjoja, joiden uusimmassa päässä on oma kirjani Algebra ja geometria.  En esitä seuraavassa teoriaa enkä perustele yhtälöiden muodostamista.

Geogebratiedosto sekä algebra- ja CAS-ikkunoiden pdf-kuvat löytyvät linkeistä http://www.elisanet.fi/simo.kivela/blg/colosseum.ggb
http://www.elisanet.fi/simo.kivela/blg/colosseumAlg.pdf
http://www.elisanet.fi/simo.kivela/blg/colosseumCAS.pdf

CAS-laskennan riveillä 1--4 on määritetty ellipsin keskipiste. Riveillä 5--6 on muodostettu ellipsin yhtälön toisen asteen osan, neliömuodon matriisi $a$. Riveillä 7--8 määritellyt vektorit ovat probleeman tuntemattomat, jotka tarkoittavat pääakselisuuntia. Näille muodostetaan neljä yhtälöä (rivit 9--12): Ensimmäinen vaatii, että kyseessä ovat liittosäteet. Toisen mukaan näiden tulee olla kohtisuoria, jolloin ne ovat akselisuuntia. Kolmas ja neljäs vaativat, että vektoreiden päätepisteet ovat ellipsin kehällä, kun alkupiste on ellipsin keskipisteessä.

Neljän tuntemattoman ja neljän epälineaarisen yhtälön ryhmän ratkaiseminen onnistuu rivillä 13 ja saadaan kahdeksan ratkaisua. Nämä ovat oleellisesti samoja ja eroavat ainoastaan vektoreiden järjestyksen ja vastakkaisuuden suhteen. Kun akselit tunnetaan, niiden pituudet ja eksentrisyys voidaan laskea (rivit 14--18). Colosseumin ulkokehän eksentrisyys on 0.60.

Ratkaiseminen siis onnistui. Millaisia olivat kokemukset?

Yrityksiä ja erehdyksiä tarvittiin paljon. GeoGebran dokumentaatiosta ei ollut aivan helppoa löytää tarjolla olevia funktioita tai komentoja ja niiden käyttöä tai merkitystä. Muutaman kerran GeoGebra kaatui ja hukkasi kaiken siihen mennessä lasketun. Aloinkin tallettaa tiedoston parin kolmen operaation välein.

Eksentrisyyden laskemisessa tuli yllätys. Laskua varten täytyy tietää, kumpi akseli on iso ja kumpi pieni. Useamman kerran laskettaessa tuli vaihdellen oikea tulos ja kompleksinen arvo. Syynä on, että GeoGebra ilmeisesti laskee ajoittain yhtälöryhmän ratkaisun uudelleen ja tulokset tulevat eri järjestyksessä.  Tämä johtaa ison ja pikku akselin roolien vaihtumiseen. Koodissa siis pitäisi testata, kumpi vektorinpituus on suurempi ennen eksentrisyyden laskemista.  Toisinaan yhtälöryhmälle tuli myös virheellinen ratkaisu.

Kyse on periaatteessa siitä, onko laskentadokumentti dynaaminen ja mikä muutos aiheuttaa sen uudelleen laskemisen. Luontevinta ehkä olisi, että se lasketaan uudelleen vain käyttäjän nimenomaisesta käskystä.

Laskenta on tehty paikallisesti asennetulla GeoGebralla. Verkkoversiossa en saanut yhtälöryhmän ratkaisua onnistumaan.

Luonteva ajatus olisi pakata laskennan vaiheet makroksi, jolla olisi yksi argumentti, nimittäin ellipsi, jota lähdetään tarkastelemaan. Tällöin saataisiin vähällä vaivalla esimerkiksi Colosseumin sisemmän ellipsin eksentrisyys.  GeoGebrassa voidaan tehdä komentoja sisältäviä skriptejä, jotka käynnistetään esimerkiksi painikkeesta. En kuitenkaan löytänyt tapaa antaa näille argumenttia (parametria). Joko se ei ole mahdollista tai dokumentaatio oli minulle liian vaikeaa.

GeoGebra on monessa suhteessa näppärä työkalu, mutta CAS-osio ei ole täysin onnistunut. Yksinkertaiset tehtävät kyllä sujuvat, mutta mahdollisuutta kasvaa sen mukana vaativampiin tehtäviin ei oikein ole. Sääli.

perjantai 3. maaliskuuta 2017

Matematiikan kai pitäisi olla matematiikkaa



Ymmärtämätön CAS-ohjelmistojen käyttö lukiomatematiikassa saattaa uhata matematiikan oppimista. Oheinen GeoGebra-kuvio voisi olla vastaus tehtävään, jossa annetaan yksi taso yhtälön avulla ja toinen kolmen pisteen avulla. Tehtävänä on määrittää toisenkin tason yhtälö ja tasojen välinen kulma.

GeoGebrassa niin kuin monessa muussakin CAS-ohjelmassa on tarjolla valmiita funktioita: Plane (suomeksi Taso) antaa tason yhtälön, kun argumentteina on kolme tason pistettä. Angle (Kulma) antaa tasojen välisen kulman radiaaneissa, kun argumentteina ovat yhtälöiden kertoimista saadut lukukolmikot. Tehtävän ratkaisemiseen riittää tietää, millaisia GeoGebra-funktioita on käytettävissä, niiden sisällä olevasta matematiikasta ei tarvitse tietää mitään. Radiaanit muunnetaan asteiksi maagisen näköisellä tempulla: kirjoitetaan kulman perään $/^\circ$.

Eihän tämä ole matematiikkaa. Kyseessä on erään ohjelman syntaksin ja makrojen opettelu.  Eikä ohjelmaa tarvitse enää missään, kun on valkolakin saanut. No, poikkeuksena matematiikan opettajat.

Yleensä ensimmäinen ajatus tilanteen korjaamiseksi on laatia ylioppilaskoetta varten säännöt, miten ohjelmaa saa tai ei saa käyttää ja millaisia lausumia tai perusteluja koesuoritukseen tulee sisällyttää. Matematiikan tunteja voidaan tietenkin käyttää näiden sääntöjen opetteluun, mutta ei sekään ole matematiikkaa.

Perusongelmana on, että matematiikan osaamista on perinteisesti testattu antamalla laskettavaksi joukko tehtäviä. Jos nämä on saatu edes likimain oikein, on katsottu, että matematiikan osaaminen on tullut näytetyksi. Laskentavälineiden aikakaudella näin ei kuitenkaan ole. Hyvillä ohjelmistoilla on mahdollista saada oikeita tuloksia mitään ymmärtämättä. Tosin myös täysiä päättömyyksiä.

Luontevaa olisi luopua ajatuksesta, että oikein laskettu lasku osoittaa ymmärtämistä.  Kysyttäköön sitä, mitä halutaan testata. Esimerkiksi on selostettava, millaisella algebrallisella menettelyllä saadaan tason yhtälö, kun kolme tason pistettä tunnetaan.  Mukaan itse laadittu esimerkki menettelyn soveltamisesta. Arvostelusta voi tulla vaikeampaa, mutta annetaanhan monissa reaaliaineissakin esseevastauksia.

Ohjelmakoodien kirjoittaminenkin soveltuisi tähän yhteyteen. Koodihan on tapa kuvata laskentamenettely.

Koulumaailmassa eniten käytettyjen CAS-ohjelmien (ei yksin GeoGebran) kehitys on ikävä kyllä edennyt väärään suuntaan. Valmiiden funktioiden, komentojen ja toimintojen määrä on suuri ja kasvaa jatkuvasti, mikä lisää kiusausta keskittyä matematiikan opinnoissa näiden opetteluun sen sijaan, että paneuduttaisiin peruskäsitteisiin ja -toimintoihin. Parempi olisi tyytyä melko harvoihin perustoimintoihin, joiden avulla tulisi itse ohjelmoida pidemmälle meneviä funktioita ja toimintoja. Tällöin opittaisiin asioita, joilla on käyttöä myöhemmässä elämässä.

Ohjelmakoodin kirjoittamisella on lisäksi kasvatuksellinen merkitys. Jos koodi ei toimi, se ei ole oikein. Virhe voi olla pieni, mutta se on korjattava eikä selitettävä tuotosta melkein oikeaksi.

maanantai 13. helmikuuta 2017

Innostaako matematiikka?


Kuusikymmentäluvulla — ennen joukko-oppiin lankeamista — lukion matematiikkaan ilmestyi uusia asioita, mm. differentiaali- ja integraalilaskennan epsilon-delta-tarkasteluja. Aivan helppoja nämä eivät olleet, mutta jonkinlaista innostusta oli ilmassa.

Runsasta kymmentä vuotta myöhemmin alettiin ohjelmoida ja taas saatiin jotakin uutta kiinnostavaa. Mukaan tuli numeerinen matematiikka. Olin itsekin kirjoittamassa pikku kirjasta numeerisista algoritmeista; mukana oli BASIC-koodeja.

Samoihin aikoihin ilmestyi Benoît Mandelbrotin kirja The Fractal Geometry of Nature ja alettiin muodostaa laskemalla häkellyttävän monimutkaisia fraktaalikuvioita. Olin esittelemässä itse laskemiani fraktaaleja Matemaattisten opettajien liiton (MAOL) päivillä ja kiinnostusta riitti.

Mitä sittemmin on tapahtunut? Pelkään, että on menty alamäkeä.  Oppisisältöjä on karsittu, osaamista kyllä testataan ja joissakin testeissä on toki menestyttykin, mutta innostusta on vaikea havaita.  Oppikirjat ovat minusta uskomattoman tylsiä. Ylioppilaskoe pakottaa keskittymään tietokoneiden buuttaamiseen eksoottisissa olosuhteissa ja moninaisten ohjelmien käyttämiseen, vaikka niiden tarpeellisuus usein jää hämäräksi.

Olisiko mahdollista tehdä jotakin positiivisempaa? Ehkä se olisi mahdollista. Hyvänä esimerkkinä on Ursa, joka on tehnyt tavattoman paljon tähtitieteen harrastamisen hyväksi. Mutta tähtitiede ei olekaan kouluaine.

Olen kantanut korteni kekoon tekemällä kirjan, jonka kansi on yllä.  Toivon sen osaltaan näyttävän, että matematiikka on laajempaa, monipuolisempaa ja kiintoisampaa kuin koulukurssin perusteella voisi kuvitella. Olkaapa hyvät!

Tarkempia tietoja kirjan omalta nettisivulta http://www.elisanet.fi/simo.kivela/vaellmat.html.

torstai 26. tammikuuta 2017

Suoran piirtäminen paperin ulkopuolella olevan pisteen kautta

Kaksi pistettä määrää tunnetusti suoran yksikäsitteisesti.  Asettamalla viivoittimen reuna pisteiden kautta suora voidaan alkeisgeometriassa piirtää. Tehtävästä tulee vaikeampi, jos toinen piste sijaitsee piirustuspaperin ulkopuolella ja tunnetaan vain kahden tunnetun suoran leikkauspisteenä. Ongelma tosin on hieman vanhanaikainen: moderneissa geometriaohjelmissahan ei ole piirustuspaperia ja kaukana oleviin pisteisiin päästään käsiksi piirustusalaa skaalaamalla tai siirtämällä.

Tehtävä on kuitenkin mielenkiintoinen ja avaa näköaloja hieman pidemmällekin. Annettuna on siis kaksi suoraa ja piste. Tulee piirtää annetun pisteen $P$ ja suorien $s_1$ ja $s_2$ leikkauspisteen $Q$ kautta kulkeva suora, mutta $Q$ on kuitenkin kaukana.


Tarvittava konstruktio on seuraava: Valitaan jokin piste $K$ ja piirretään sen kautta kolme suoraa (punaiset). Yksi näistä leikkaa suoran $s_1$ pisteessä $A_1$ ja suoran $s_2$ pisteessä $A_2$.  Piirretään suorat $PA_1$ ja $PA_2$. Nämä leikkaavat toisen punaisista suorista pisteissä $B_1$ ja $B_2$. Kolmas punainen suora leikkaa suorat $s_1$ ja $s_2$ pisteissä $C_1$ ja $C_2$.  Piirretään suorat $B_1C_1$ ja $B_2C_2$. Näiden leikkauspiste $R$ on etsittävän suoran piste, ts. pisteet $P$, $Q$ ja $R$ ovat samalla suoralla $s$.

Miksi konstruktio sitten toimii? Kyseessä on Desarguesin lause: Jos suorat $A_1A_2$, $B_1B_2$ ja $C_1C_2$ kulkevat saman pisteen kautta, niin pisteet \[P = A_1B_1 \cap A_2B_2, \quad R = B_1C_1 \cap B_2C_2, \quad Q = C_1A_1 \cap C_2A_2\] ovat samalla suoralla. Tässä $A_1B_1 \cap A_2B_2$ tarkoittaa suorien $A_1B_1$ ja $A_2B_2$ leikkauspistettä jne. Girard Desargues oli ranskalainen 1600-luvulla vaikuttanut matemaatikko (ks. esim. http://www-history.mcs.st-and.ac.uk/Biographies/Desargues.html).

Desarguesin lauseen todistus on helpompi kolmessa dimensiossa kuin kahdessa.

Jos nimittäin kolme punaista suoraa eivät ole samassa tasossa, niillä olevat pisteet $A_1$, $B_1$ ja $C_1$ määräävät erään tason, pisteet $A_2$, $B_2$ ja $C_2$ vastaavasti toisen tason. Näiden leikkaussuora olkoon $s$.

Toisaalta pisteet $K$, $A_1$ ja $B_1$ määräävät tason, jossa myös pisteet $A_2$ ja $B_2$ ovat. Suorat $A_1B_1$ ja $A_2B_2$ sijaitsevat tässä tasossa eivätkä siis ole ristikkäisiä. Tällöin niillä on leikkauspiste $P$. Tämä sijaitsee sekä tasossa $A_1B_1C_1$ että tasossa $A_2B_2C_2$, ts. suoralla $s$.

Vastaavasti voidaan osoittaa, että sekä suorien $B_1C_1$ ja $B_2C_2$ leikkauspiste $R$ että suorien $C_1A_1$ ja $C_2A_2$ leikkauspiste $Q$ ovat suoralla $s$.

Kaksidimensioinen todistus saadaan tämän jälkeen tulkitsemalla kaksidimensioinen kuvio kolmidimensioisen projektiokuvaksi.

Päättelyissä ja jo alkuperäisessä kuviossakin syntyy poikkeustilanteita, jos jotkin suorat eivät leikkaakaan, vaan ovat yhdensuuntaisia.  Esimerkiksi alkuperäisestä kuviosta voi kysyä, mitä tapahtuu, jos suorat $s_1$ ja $s_2$ ovatkin yhdensuuntaiset. Projektiivisessa geometriassa tällaiset ongelmat ratkeavat liittämällä geometriseen tasoon äärettömän kaukaisia pisteitä. Ajatellaankin, että kaksi yhdensuuntaista suoraa leikkaa toisensa äärettömän kaukana olevassa pisteessä, johon päästään etenemällä suoria pitkin kumpaan tahansa suuntaan. Tällä tavoin syntyy ristiriidaton — ja kaunis — geometria, mutta kaikkia euklidisen geometrian totuttuja ominaisuuksia sillä ei ole.

perjantai 16. joulukuuta 2016

Funktioteoreettiset piparit

Joulun kunniaksi esittelen funktioteoreettisen sovelluksen piparimuottien valmistamiseen. Älköön kukaan kuitenkaan ajatelko, että tämä on esimerkki matematiikan soveltamisesta arkielämään tai osoitus matematiikan tarpeellisuudesta.  Jouluhan on sitä paitsi juhla eikä arkea.

Kompleksimuuttujan kompleksiarvoisia funktioita $f:\mathbb{C} \to \mathbb{C}$ voi tutkiskella selvittämällä, millaiseksi käyräksi kuvautuu sopivasti valittu lähtötason käyrä, esimerkiksi suora tai yksikköympyrä.

Funktion
\[
f(z) = \left(z^p + \frac{1}{2z^p}\right)^{1/p}
\]
tapauksessa sopiva käyrä on yksikköympyrä. Luontevinta on, että $p$ on luonnollinen luku, mutta myös puoliluvut $1/2$, $3/2$, $5/2$ jne. kelpaavat. Tuloksena on piparkakkumuottikäyriä:

$2p = 1,\ 2,\ 3,\ 4,\ 5,\ 6,\ 7,\ 8,\ 9,\ 10,\ 200$

Aivan ongelmaton tilanne ei ole, sillä piparkakkumuotin tulee olla umpinainen käyrä, mutta kompleksiluvun vaihekulman eli argumentin antava funktio $\arg$ saa arvonsa väliltä $]-\pi,\pi]$ ja jaksolliseksi laajennettuna sillä on hyppyepäjatkuvuus kohdissa $\pi + 2n\pi$ ($n$ kokonaisluku tavanomaiseen tapaan). Tämä on korjattava jatkuvaksi, jotta saadaan umpinainen piparkakkumuotti.  Saman asian voi tehdä valitsemalla sopiva arvo funktion lausekkeessa olevalle $p$:nnelle juurelle (eli potenssille $1/p$). Kompleksitasossahan $p$:nnellä juurella on $p$ eri suurta arvoa.

Jotkut ratkovat ristisanatehtäviä aikansa kuluksi. Matemaattisemmin orientoituneet henkilöt saattavat olla kiinnostuneita matemaattisen ohjelmakoodin selvittelystä. Tarjoan pohdittavaksi Mathematica-koodin, joka piirtää piparimuotteja. Ongelmana siis on, mitä mikäkin koodirivi tekee.


Vihjeeksi Mathematica-ohjelmiston käyttämän kielen, ns. Wolfram Languagen verkkodokumentti: http://reference.wolfram.com/language/.

Tämän jälkeen voikin ryhtyä tekemään piparkakkumuotteja 3D-tulostuksella.  Minulla itselläni on vanhemmalla tekniikalla tehdyt: peltiä leikkaamalla ja taivuttelemalla.



Lopuksi toivotan kaikille riemullista joulujuhlaa.

tiistai 29. marraskuuta 2016

Viiden pisteen ellipsi

Koordinaattitasoilla olevien ympyröiden kuvaellipsit
xy-tasossa olevan ellipsin yhtälö on aina muotoa
\[
Ax^2 + By^2 + 2Cxy + 2Dx + 2Ey + F = 0
\]
sen muodosta ja asemasta riippumatta. Yhtälö voi kertoimista riippuen esittää myös paraabelia tai hyperbeliä tai näiden erikoistapauksia. Yhteisellä nimellä käyriä kutsutaan toisen asteen käyriksi tai kartioleikkauksiksi.

Kertoimia yhtälössä on kuusi. Käyrä ei kuitenkaan muutu, jos yhtälö kerrotaan jollakin luvulla. Oleellisia eivät siten olekaan kertoimet vaan niiden suhteet, joita on viisi. Näiden määrittämiseen riittää tuntea viisi pistettä. Kertoimet saadaan siis ratkaisemalla viiden yhtälön lineaarinen ryhmä. Pisteiden sijainnista riippuen tuloksena on ellipsi, paraabeli, hyperbeli tai jokin erikoistapaus.

Valmis työkalu käyrän muodostamiseen viiden pisteen avulla löytyy monista dynaamisen geometrian ohjelmista (ainakin GeoGebra ja TI-Nspire; onko Class Padissa?). CAS-työkaluilla voi tietenkin myös ratkaista em. viiden yhtälön ryhmän.

Ellipsi kuitenkin määräytyy yksikäsitteisesti myös, jos tunnetaan yksi liittohalkaisijapari. Liittohalkaisijaparia sitoo ehto, että kumpikin puolittaa toisen suuntaiset jänteet. Tällöin tunnettuja pisteitä on kuitenkin vain neljä, liittohalkaisijoiden päätepisteet. Mistä saadaan viides piste?

Viidennen pisteen konstruointi

Viides piste löytyy varsin yksinkertaisella konstruktiolla: Muodostetaan ellipsin ympäri piirretty suunnikas asettamalla kummankin liittohalkaisijan $AB$ ja $CD$ päätepisteiden kautta toisen liittohalkaisijan suuntaiset suorat. Valitaan jokin tämän kärki ($F$) ja tätä vastaten määritetään janojen $KD$ ja $FD$ keskipisteet $M$ ja $N$. Viides piste on suorien $MF$ ja $AN$ leikkauspiste $P$.

Konstruktion pätevyys ei ole itsestään selvää. Todistus ei kuitenkaan ole hankala, kun lähdetään ajatuksesta, että jokainen ellipsi on ympyrän affiininen kuva, ts. kuva yhdensuuntaisprojektiossa eli aksonometrinen kuva. Koska tällöin janojen jakosuhteet säilyvät, janojen keskipisteet kuvautuvat kuvajanojen keskipisteiksi. Ellipsin liittohalkaisijoita vastaa ympyrän kaksi kohtisuoraa halkaisijaa; nämähän nimittäin ovat ympyrän liittohalkaisijoita, ts. kumpikin puolittaa toisen suuntaiset jänteet.

Jäljelle jää siten vain osoittaa, että vastaava konstruktio ympyrässä tehtynä tuottaa ympyrän pisteen. Tämä puolestaan on alkeisgeometriaa.

Ellipsin piirtämismenetelmänä konstruktio ei nykyisten tietokoneohjelmien aikakaudella enää ole kovin merkittävä. Alussa olevassa kuviossa ympyröiden kuvaellipsit olisi luonnollisesti voitu piirtää konstruoimalla viides piste, mutta ohjelmistot usein tarjoavat muunlaiset valmiit työkalut tällaisiin tehtäviin. Esimerkkinä GeoGebra, jolla kuvio on tehty.

Olemmeko menossa kohden maailmaa, jossa matematiikan taitoja tärkeämpää on osata käyttää ohjelmistoja?

torstai 17. marraskuuta 2016

GeoGebra ja CAS

Edellisessä postauksessani kritisoin GeoGebran CAS-osiota. Hieman laajempaa ongelmaa tutkiessani johduin uudelleen ihmettelemään sen piirteitä. Seuraava on mahdollisimman yksinkertainen esimerkki CAS-osion ja dynaamisen geometrian osion välisistä suhteista. (CAS = Computer Algebra System)

En ole hirveän hyvin perehtynyt GeoGebran sielunelämään. Joku viisaampi voi varmaan kommentoida havaintojani.


Lähtökohtana on piirtonäyttöön piirretty origokeskinen yksikköympyrä, suora $y = x$ ja näiden leikkauspisteet $C$ ja $D$. Kaikki muodostettu dynaamisen geometrian työkaluilla.

Objektit löytyvät myös CAS-puolelta: ympyrän ja suoran yhtälöt objektien nimillä, pisteet samoin. Jälkimmäisille on saatu murtolukuesitys tarkkojen arvojen painikkeella (korostettu sinisellä).

Leikkauspisteet voidaan tietenkin myös löytää ratkaisemalla ympyrän ja suoran yhtälöiden muodostama yhtälöpari. Tätä on yritetty rivillä 5, mutta tulos on omituinen. Jos Solve-komentoon sen sijaan kirjoitetaan yhtälöt niiden nimien sijasta, oikeat ratkaisut löytyvät. Ongelmana lienee, minkä nimiä $c$ ja $f$ oikeastaan ovat. Odottaisin, että nimet kelpaavat symbolisessa laskennassa.

Yhtälöpari voidaan ratkaista myös aktivoimalla rivit 1 ja 2 ja painamalla tarkan ratkaisun painiketta. Saadaan rivin 6 oikea tulos. Tämän perusteella voidaan muodostaa pisteet $C1$ ja $D1$ (rivit 7 ja 8). Nämä ilmestyvät myös piirtonäyttöön (kuvassa ne on piilotettu).

Hämäävää on, että leikkauspisteille on saatu kaksi esitystä, molemmat ns. tarkkoja ratkaisuja. Tämän perusteella täytyisi olla
\[
\frac{\sqrt{2}}{2} = \frac{470832}{665857},
\]
 ts. kakkosen neliöjuuri olisi rationaalinen.

Selitys luonnollisesti on, että leikkauspisteet on laskettu kahdella eri algoritmilla, dynaamisen geometrian numeerisella algoritmilla ja CASin symbolisella. Myös edellistä CAS kuitenkin käsittelee tarkkana arvona.

Dynaamisen geometrian idea, kuvion muunneltavuus, toimii kaikkialla: Jos suoraa muutetaan piirtonäytössä pisteitä $A$ ja $B$ siirtelemällä, kaikki CAS-puolen tulokset muuttuvat vastaavasti, myös pisteiden $C1$ ja $D1$ koordinaatit, joihin ilmestyy tilanteen mukaan mutkikkaita juurilausekkeita.  Tämä ei luonnollisestikaan enää päde, jos rivillä 5 syötetään ympyrän ja suoran yhtälöt Solve-komentoon. Niillähän ei tällöin enää ole kytkentää piirtonäytön objekteihin.

Esimerkki tuo esiin CAS-ohjelmien sudenkuopat. Yhtenäisyyden saavuttaminen ei ole helppoa. Ohjelman kehityksen alussa tehdyt valinnat voivat olla esteenä myöhemmin ilmenevien epäjohdonmukaisuuksien korjaamiseen. Tämä ei ole niinkään harvinaista: tie eteenpäin kulkee usein aloittamalla uusi projekti, jossa luodaan uusi ohjelma ja hyödynnetään tehtyjen virheiden antamat opetukset.

Tavallaan GeoGebrakin on tällainen uusi projekti. Aiemmat (Cabri, Cinderella, ...)  eivät käsittääkseni ole yrittäneetkään symbolilaskennan valtausta.